Biological Control of Invasive Mole Crickets in Florida Pastures: Well Worth the Cost

in an ongoing effort to control the many pests that hinder cattle production, it’s nice to look back every now and then to celebrate a true success story. One such story is close to home and affects hundreds of Florida’s cattle producers: the battle to control invasive mole crickets.

Accidentally introduced to the Southeastern United States during the early 20th century were three species of South American mole crickets (short-winged mole cricket, long-wing mole cricket and southern mole cricket) two of which spread across the coastal area of the United States from North Carolina to Texas. By the mid-1940’s they were causing widespread losses to agriculture. Pastures and other grasslands along with vegetable crops were particularly vulnerable to the mole cricket’s habit of burrowing and feeding on roots. Initially chemical pesticides were most successful in controlling the mole crickets and eventually the liberal use of chlorinated or similar chemicals was considered the most cost-effective control. However, during the 1960s and 1970s a series of environmental laws were adopted that eventually removed the use of chemicals from the environment. Efforts to identify replacement chemicals were tried but found ineffective or too expensive. By 1978 farmers and ranchers faced a serious threat from mole crickets with no clear remedy in sight.

The growing sense of concern by Florida cattlemen and other agricultural interests spurred the search for a new approach to mole cricket control. Most agreed it was time to think outside the box and researchers with the University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS) Entomology and Nematology Department were asked to assist in finding a solution. These researchers proposed a completely different pest management tactic, one they termed classical biological control (CBC).

At the time, CBC was considered by many to be unorthodox and less effective than chemical controls. Involving important pests, yet CBC is actually one of the oldest and most successful forms of pest management. Simply stated, CBC seeks to reintroduce the natural enemies of pests from their homelands. In a natural ecosystem, plants and animals evolve within a complex system of checks and balances. Because of these natural checks, native species seldom become pests because their natural predators, parasites, pathogens, and competitors are working to keep them in check. However, when an animal or plant is accidentally introduced into an entirely new environment, the new host ecosystem often lacks the natural enemies needed to control the newly introduced species. Free of its natural checks, this invasive species can rapidly grow in numbers, overwhelming the native flora and fauna. With this approach, researchers search for the pest’s natural enemies and after they’re assured these controlling species won’t become pests themselves.

(Continued on page 50)
Biological Control... (Continued from page 51)

release these species to ruminate their job of controlling the pest in its new ecosystem. So in 1978 the UF / IFAS team of researchers, led by Drs. Tom Walker and Howard Frank, established the Mole Cricket Biological Control Project (MCCP) with the goal of finding and releasing the mole cricket’s natural enemies.

After a number of years researching pest mole crickets and their natural enemies in South America, the MCCP eventually settled on three control species (two parasitic insects and an insect pathogenic nematode) who were host specific to the pest mole crickets and unlikely to create problems for the native flora and fauna. The three natural enemies were released widely across the state during the 1980’s and early 2000’s, with varying degrees of success. Of the three, the nematodes proved particularly effective so was mass produced and sold until recently as a commercial product, Nemacol®. The nematode eventually became epidemic among the pest mole crickets, reducing their populations by more than 95% in many areas of the state, by 2012. After its beginning, the MCCP was declared a success and officially closed. Today, pest mole cricket populations are no longer considered a significant pest in most areas of Florida and only resurfaces sporadically for limited periods of time before

the nematodes and its necessary limited application of pesticides, creating a successful mole cricket invaders.

While the program has been a clear success, it came with a significant price tag. As economists are to caution, “there is no such thing as a free lunch.” In judging the overall benefit of the MCCP, one would need to measure both its benefits and costs to answer the more relevant question “was this program a good use of public money?” This is the question recently considered by researchers with UF IFAS, Florida A&M University and the U.S. Department of Agriculture, Animal and Plant Health Inspection Service.

Starting with the project’s cost, a thorough assessment was conducted of the MCCP budget history which accounted for all costs associated with the 34-year program. The assessment included operating funds from state appropriations, grants, the Florida Cattlemen’s Association, and other non-recurring sources along with compensation for salaries and benefits for the UF IFAS faculty associated with the project. In total the costs summed to $6.8 million (adjusted to 2013 dollars). On the other side of the ledger, accounting for the project’s benefits proved more difficult. Because the crickets were a significant agricultural and landscape interest in addition to pasturhead, including private homeowners, homeowner associations, public parks, golf courses etc., the benefit from reduced mole cricket numbers would be wide spread and difficult to quantify. To err on the conservative side, this study only considered benefits to a commercial pastureland, more specifically, those beneficialized by Florida’s cattle producers as represented by a membership by the Florida Cattlemen’s Association (FCA). To this end, the FCA membership was surveyed in the fall of 2012 and participants answered a series of questions about the cattle operation, history of mole cricket problems and the cost of... (Continued on page 57)

Biological Control... (Continued from page 53)

more cricket control both before and after the MCCBP.

In some cases survey participants indicated that more crickets had been entirely eliminated as a pasture pest while others that the pest numbers were significantly reduced and less costly to control. As for any reduced mole cricket control survey participants reported that nearly 20% of their infested pastureland had been recovered, with the largest number of benefits realized in central Florida. There were also large savings in mole cricket control costs, particularly in central Florida. Statewide these savings totaled more than $3 million annually (per year compared to 2013 dollars). Please refer to Table 1 for a regional breakdown of savings. This means every eight months the MCCBP is saving Florida’s cattle producers more money in pest control than its full 34 year price tag ($3.12 = $3.8 x 8, 6.5 billion)

To estimate the economic benefit resulting from the MCCBP reducing pest control costs one can consider the $3 million annual benefit in perpetuity and apply the commonly used 3% social discount rate (the annual rate society uses to reduce the value of future payments). This would result in the $3 million perpetual annual benefit equating to a onetime sum of $453 million ($376 million,03), a benefit to cost ratio of 2:1. This means every public dollar invested in the project has resulted in $2 in benefits from reduced pest control costs. Don’t forget that this is a very conservative investment and doesn’t include savings to states outside Florida or interests outside commercial pastureland.

There’s more to consider too. The continuous cost of managing mole crickets in Florida pastures, as well as golf courses, turf farms, athletic fields, residential lawns, and other areas infested by mole crickets would have been much greater if the Florida Cattlemen’s Association, Florida Cattlemen’s Association, and other organizations had not funded the MCCBP. Nearly $1 million in research and development would have been invested and damaged at a level some of the pest mole crickets spread throughout Florida. Fortunately, due to the MCCBP and other pest management practices, infested lands were limited to about one third the level.

In conclusion, while classical biological control projects can often be time consuming and incur significant capital investment during the research and development phase, when they work, the savings to agriculture and the public at large can be enormous. This one-time $3.6 million dollar investment... (Continued on page 58)
Biological Control...

(Continued from page 27)

 returned nearly half a billion dollars in savings to Florida’s cattle producers in reduced control costs. If one were to measure the benefits to other states and other areas of turf harmed by the invasive mole crickets (golf courses, home lawns, public lands, etc.) it would be reasonable to say the benefits could exceed one billion dollars. Not a bad investment of public funds!

Table 1.

Estimated acres of infested pasture and annual savings in 2013 after the mole cricket biological control program (MCBCP).

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of pastures</th>
<th>Number of pastures infested</th>
<th>Percentage infested</th>
<th>Pro-MCBCP annual control cost</th>
<th>Post-MCBCP annual control cost</th>
<th>Post-MCBCP annual savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Florida</td>
<td>1,058,900</td>
<td>370,600</td>
<td>35.0</td>
<td>$6,286,448</td>
<td>$2,076,469</td>
<td>$4,209,979</td>
</tr>
<tr>
<td>Central Florida</td>
<td>3,032,700</td>
<td>727,850</td>
<td>24.0</td>
<td>$9,700,943</td>
<td>$2,315,333</td>
<td>$7,385,592</td>
</tr>
<tr>
<td>South Florida</td>
<td>840,100</td>
<td>319,250</td>
<td>38.0</td>
<td>$2,640,127</td>
<td>$625,998</td>
<td>$2,014,129</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,931,700</td>
<td>1,417,700</td>
<td>29.0</td>
<td>$18,627,518</td>
<td>$5,017,820</td>
<td>$13,609,688</td>
</tr>
</tbody>
</table>

Useful links:
http://entomology.ifas.ufl.edu/pastures/cricket/index.htm
http://ces.epm.ufl.edu/Agricultural_IPM/Mole_Cricket_project.html

Polk Tractor Company
3450 Havendale Blvd.
Winter Haven, Florida 33881
863-967-0651

EAT MORE BEEF

Larva wasp feeding on shrubbery foliage buttrose

Larva wasp attacking mole cricket

Collecting mole crickets in a Polk County pasture

Shift Into Savings

KUBOTA SALES EVENT

On Select New KUBOTA M Series tractors!

0% FOR 84 MONTHS

The deals are in overdrive on all new Kubota M Series tractors!

"12% down, 0% APR financing for 36 months or new Kubota M Series Equipment is available to qualified persons from participating dealers on stock inventory through 1/31/2016. Example: An $11,000 tractor lease agreement term of 36 months APR, regular monthly payments of $11,000 at 0% APR interest is available to customers if no dealer documentation processing fee is charged. Dealer charge for document preparation fee shall be in accordance with state laws. Inclusion of interest rate payer may result in higher finance terms. 0% APR and zero down financing may not be available with customer incidental relief options. Financing is available through Kubota Credit Corporation, U.S.A., 3871 Saticoy Blvd., Van Nuys, CA 91405. Subject to credit approval. Some restrictions apply. Offer ends 1/31/2016. See all Kubota dealers for those and other low rate options or go to www.kubota.com for more information. Optional equipment not shown.

Florida Simmental Association
Visit us on Facebook
FloridaSimmental.com

Buying or Selling Land?
Call the Taylor-Buckley, Land Team
Specialists in Agricultural & Transition Properties
Oklahoma Taylor, ALC
(662) 234-4503
David Blackshear, ALC
(662) 234-9932

The Floridian Cattlemen / October 2015